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PREFACE 

This report has two distinct sections,  a longer-than-usual 
abstract which summarizes the author's findings and feelings on 
the steady-state problem and a somewhat detailed treatment of 
the same matter.    The former is commended to all readers,  and 
the latter to those inspired by the abstract and to anyone who is 
going to take up this type of study.    For such an individual, the 
latter section could   save months of time. 

This report contains,  in far greater detail than could be 
found in the literature, a critical appraisal of the tools available 
for handling the steady-state problem,  as to (a) usefulness, 
(b) validity of assumptions contained in the procedures,  and 
(c) problems left in an unsatisfactory state requiring a research 
effort, 

A second report on the subject of time to explosion after 
receipt of a thermal stimulus is in preparation. 
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:: ABSTRACT 

m 

The question. "Will an explosive explode when subjected to a 
fi: 

given elevated temperature?" can be attacked by studying the 
ü heat transfer in the explosive if the question is rephrased to 

read "Is it possible to realize steady-state temperature gradients 
in an explosive which is subjected to a given elevated temperature?" 
If the answer is no,  then the resulting "runaway" temperature 
profiles signal that an explosion will occur. 

The steady-state heat-transfer equation containing a term for 
heat generation by chemical reaction at all points was studied from 
a number of points of view.    The heat-generation term was governed 
by a zero-order rate-of-reaction equation.    With this type of 
kinetic expression,  the explosion condition can be obtained 

r| rigorously from the mathematics without defining what kind of 
temperature rise represents an explosion.    The temperature vari- 
ance of the zero-order rate equation was described by the 
Arrhenius expression, which in turn was approximated by the so- 
called "exponential approximation. "   It was shown that this 
approximation is satisfactory for the steady-state problem and that 
it no longer need be questioned in connection with this problem. 
The physical parameters were all considered not to be functions of 
temperature.    Again,  this approximation is adequate for steady-state 
problems where the temperature differences involved are not large. 
Where a steady state was calculated to exist no temperature differ- 
ences in the explosive in excess of 10   C were observed. 

Of primary concern in the steady-state problem is the minimum 
temperature of explosion.    If the environment of the explosive is 
below the minimum temperature of explosion,   steady-state tempera- 
ture gradients can exist in the explosive; if the environmental 
temperature is above,  then an explosion occurs.    It is to be 
emphasized that the minimum temperature of explosion is not a 
property of the explosive material itself,  for it is quite dependent 
on the. environment,  mass,  and configuration of the explosive charge. 
The following table shows minimum temperature^ of explosion for 
lead azide which were calculated in the course of this work.    The 
values rangefrom 1490C to Z6y0C.    It was presumed that the 
activation energy (E = 36, 300 cal/g mole),  frequency factor 
(Z =  10     *     sec     ),  and heat of explosion (Q = 399 cal/g) are 
intrinsic properties of lead azide with the correct numerical values 



as stated.    The variations among the values in the table resulted 
from variations in the thermal conductivity of the powder bed of 
lead azide ( ^  ),  the bulk density of the powder bed { p ), and the 
thickness of material (a), with environmental conditions and mass 
of lead azide considered.    The numerical values given to these 
properties are thought to be realistic.    The thermal conductivity 
of beds of very fine powder is very difficult to determine.    The 
great range of values appearing in the table reflects attempts to 
estimate the thermal conductivity of the lead azide powder bed 
with either helium at atmospheric pressure or air at 0,4-micron 
pressure in the interstices.    The crystal density of lead azide is 
4,705 g/cm ; however,  photographs of lead azide involved in 
ignition experiments revealed its bulk density to be 0.54 g/cm 
in that situation.    Hence,  the bulk densities used are in the 
correct range.    The thickness can,  of course,  be as desired. 

TABLE 1 

Minimum Temperature of Explosion of Lead Azide 

Tm (0C) A   (cal/cm sec 0K) P (g/cm 3) a (cm) 

149* 2.51 x 10"8 

1.55 x 10"5 

2.51 x 10~8 

1.55 x 10"4 

1.55 x 10"4 

1.55 x 10"4 

1.55 x 10"3 

1.55 x 10"4 

1.55 x 10"4 

1.55 x 10"3 

0.54 0.078 
173' 0.88 0.509 
184* 0.54 0.078 
187 2.64 0.509 
192 1.76 0.509 
201 0.88 0.509 
233 0.88 0  509 
263* 0.54 0.078 
264* 0. 54 0.078 
269 0.88 0.051 

* See text for explanation of difference. 

It is interesting to compare the first and third Tm's, 1490C 
and 1840C,  in Table 1.    Since all parameters are identical, the 
results would be expected to be the same.    However,  different 
boundary conditions were used in the two cases.    The first was 
calculated under the conditions that the lower surface of an 
infinite slab 0.078 cm thick was held at a constant temperature 



while the upper surface was allowed to communicate heat with an 
environment at 50 ^ governed by a heat-transfer coefficient of 
2 x 10"    cal/cm    sec0C.    It should also be pointed out that for 
these parameters an increase in the heat-transfer coefficient to 
infinite value, which is tantamount to maintaining the upper 
surface at 50oC, would not increase the minimum temperature 
of explosion above 1840C. 

The effect of the boundary conditions is also available for the 
Tm's of Z630C and 2640C) the former being for the perfect- 
insulation boundary condition.    Here, with the greater thermal 
conductivity, the heat transfer at the upper surface hardly affects 
the minimum temperature of explosion. 

The solutions to the steady-state problem, which appear in the 
literature have been given a critical review.    It was concluded that 
the solutions are adequate and usable.    Although it is possible to 
construct boundary conditions for which solutions are not available, 
there currently does not appear to be any set of conditions for which 
a solution should be obtained forthwith. 

During this study of the steady-state problem,  a few things 
were developed which are improvements over the current literature; 
however,   since they concern steady-state profiles,  they are 
secondary in importance to the main objective of defining critical 
conditions for explosion.    The equation shown in this report for 
obtaining a steady-state temperature profile in the case of 
symmetrical heating (lower face of slab at constant temperature, 
upper face perfectly insulated) is the best solution available for 
this problem; for the case of unsymmetrical heating (lower face at 
constant temperature,  upper face communicating with the environ- 
ment),  the equations developed in this report are more easily and 
more rapidly handled than those appearing in the literature. 

DanielS.  Ling,  Jr.,  of P.E.G. Corporation is currently 
developing a theory of initiation of explosives using a statistical 
approach.    The first adequate summary of his progress to date has 
recently been published in Proceedings of the Eleventh Basic 
Research Group Contractors' Conference and Symposium,  U.S. 
Army, ERDL,  pp,  225-271,   1962 and in the final report submitted 
by P.E.C. Corporation on Contract DA-44-009-ENG-4774,   Those 
papers have not been studied in minute detail, but it is recommended 



that the Explosives Research Section retain scientific cognizance 
of the developments.    Currently,  numerical calculations are 
diff.'cult or impossible with merely the referenced article. 
Calculations were attempted for lead azide, but the parameters 
were far out of range of those listed by Ling.    The illustrative 
computations in his article merely show that,  at the current stage 
of development,  correct "ball park" answers result for a 
"typical" explosive. 



INTRODUCTION 

In the study of steady-state heat conduction in explosives, 
the limiting conditions under which a steady state can exist are 
of primary importance.    That is to say, if the temperature of 
the environment of a specific explosive in a specified condition 
is continuously increased in a stepwise fashion, at each step a 
steady-state temperature distribution will be set up in the 
explosive; however,  these temperature increases cannot 
continue indefinitely,  for at some temperature a steady- state will 
no longer be possible,  and   an explosion will result.. It is this 
limiting temperature for the steady state,  called the minimum 
temperature of explosion, which is of prime interest.    Of course, 
the temperature could be considered constant,  and some other 
condition could be varied until an explosion resulted. 

Nearly all of the available literature pertinent to this subject 
has been covered; however,  not all of the literature which was 
inspected is summarized in this report.    The following works are 
of particular interest:   (1) Finklestein and Gamow (NAVORD Report 
90 - 46,  20 Apr 1947) is fine for original guidance,  (2) Frank- 
Kamenetsky (Zhurnal Fizichesky Khimii,  XXXII,   1182,   1958) is 
credited by most authors with originating the critical-conditions- 
for-explosion concept,  (3) Chambre (J Chem Phys,  20,   1795, 
1952) gives an excellent account of solutions for critical conditions, 
(4) a series of articles by Thomas,  and sometimes co-workers 
(Trans Far Soc,  2007,   1961) gives the most complete and most 
realistic treatment,  and (5) Gray and Harper (Trans Far Soc, 55, 
581,   1959) give an interesting account. 

The numerical calculations which are considered were made 
for slabs of RDX 2.5 cm thick and infinite in all other dimensions 
and for slabs of lead azide in a variety of dimensions.    The 
physical and chemical parameters used for RDX are listed by Zinn 
and Mader in J Appl Phys,   31,   323,   I960.    The parameters for 
lead azide are given near the mention of the calculations.    Credit 
goes to Peter Mclntyre,   Cooperative Student from the University 
of Detroit,  for plowing through the detailed numerical work and 
plotting the graphs.    His efforts contributed materially to the 
writing of this summary. 
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THE PROBLEM 

The time-varying problem of heat conduction in an explosive is expressed 
as follows: 

PQZe-E/RT = -.AV*r + pC-f (1) 

il 
The steady-state condition imposes the restriction of     .. 
Thus, the equation of interest for the steady state becomes 

= 0 in Equation 1 

pQZe-E/RT = -AV2T (2) 

Two sets of boundary conditions were considered in detail.    The conditions 
which are easiest to handle are: 

T(±a) = THp (3) 

— =0 (4) 

These conditions require that the temperature profile in an infinite slab be 
symmetrical about the center plane which is taken as the x = 0 position. 

T (0) = T HP (5) 

A 1^ 
i dx »> (T2a - TJ 

2a 
(6) 

Equations 5 and 6 lead to unsymmetrical temperature profiles which make the 
problem more difficult to handle; however,  these conditions are quite realistic 
for experimental conditions in which the upper (here x = 2a) face of the "slab" 
is exchanging heat with a gaseous or "vacuum" medium and the lower face 
(here x = 0) is in contact with a hot surface. 
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Another set of boundary conditions was considered briefly. 
A combination of the conditions expressed in Equations 4 and 6 
is a consistent set,  if Equation 6 is required to hold for both 
faces of the slab at x = ±a,  the center plane being the x   = 0 
position.    The difficulty with all boundary conditions involving a 
heat-transfer coefficient h is getting a numerical value for h in 
which one has confidence. 

Equation 2 was solved for one-dimensional heat flow in an 
infinite slab, which makes the Laplacian operator,       y    T,  equal 
to   d   T, with the assumptions that reactant consumption is 

^z 

negligible and that the physical properties of the explosive do not 
vary with temperature. 

'0 
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APF/ROXIMATIONS FOR THE RATE OF REACTION TERM 

If Equation//z for one-dimension.al heat flow in a slab is changed to 
dimensionless ]' ariables, Equation 7 results. 

where 

(7) 

and £ RpOZ]% 

EA 

The so/.'ution to Equation 7 in closed form has not appeared in the 
literature./   Furthermore,  it is believed that Equation 7 cannot be solved 
analvticall// in closed form. 

/ 
As a i-esult of this inability to handle Equation 7, at least two approxima- 

tions of tHe exponential term in the Arrhenius expression have been u^ed. 
The exponential approximation has beau   nost widely used and is investigated 
thoroughly in this report; the quadratic approximation has been used less 
frequently^ and receives only passin.g attention here. 

Althojir;h very few authors so state and some even attach a degree of 
mystery J; it, the exponential approximation is actually a Taylor-series 
expansio I Tor l/T about the point l/Tj-jP,  neglecting all but the first two terms 
Thus, 

i 
T 'HP

1 

(T-THp) which Jeads to the approximation 

- (•: F i' -E/RTHP 

E(T-TBp)\ 
RTHPJ 

It is rean   r.ible to ask how well the approximation describes the actual functions, 
Mathemat .:al manipulation of the approximation for l/T results in 

l/T 
2THp - T 

HP 



Figure 1 shows this approximation for hot-plate temperatures of 
380oC and 340oC.    It can be seen on the graph that the true values 
for 1/T form a hyperbola which is approximated by two straight 
lines,  one for THp = 380oC and one for THp = 340oC.   Each 

straight line gives the exact value at its hot-plate temperature.  It 
should be noted that the difference between the approximation and 

vO, .o. the function is 3.0% at 100  C below THp of 380  C and is 5.3% at 
150  C below the hot-plate temperature.    Similarly, it can be seen 
that for a hot-plate temperature of 340   C,  the difference is 7. 1% 
at 160  C above the hot-plate temperature. 

It can be concluded from Figure 1 that 1/T is always greater 
than the approximation.    Therefore, the "true" reaction rate, 
which is proportional to     e"   '    , will always be less than the rate 
given by the approximation.   Thus,  if the approximated rate is too 
great, the approximatedminimum temperature of explosion will be 
lower than the true minimum temperature of explosion.    Computed 
minimum temperatures of explosion always seem to be lower than 
experimentally observed ("true") minimum temperatures of 
explosion; however,  the differences are much too large to be 
ascribed to this aoDroximation alone. 

It was interesting to compare absolute values of 1/T with the 
approximation; however, it may be clearer to compare the ratio of 
the approximation with 1/T,   Figure 2 shows this ratio as a 
function of temperature.    Obviously,  the further one is from the 
hot-plate temperature, the poorer is the approximation.    On this 
graph,  the ordinate can be read directly as a fraction of the true 
value.    It can be seen that the approximation is within 99% of the 
true value up to approximately 60oC from the hot-plate tempera- 
ture and that the distribution is essentially symmetrical about the 
hot-plate temperature. 

- E /RT 
Since the term e" ,  and not 1/T appears in Equation 2,  a 

better comparison can be made between e"-^'^-^ ancj ns approxi- 

ETr - THp)  V 
 ? 1    Figure 3 shows this 

RTHP'    / 

comparison for an activation energy of 65,000   cal/g mole at hot- 
plate temperatures of 340oC and 380oC.    As has been indicated 
earlier in this report,  the approximated rate is always greater 
than the "true" rate and its distribution is approximately 
symmetrical about the hot-plate temperature.    It should be noted 

mation /. E/RT 

10 



iiiHiiiiiiiiiimwuiiiiiiiiiiniiiiiiiii 

that the percehtag-e error for a given temperature interval away 
from the hot-plate temperature is much more severe than for 
the comparison of the exponent made in Figures 1 and 2,    The 
"true" rate will be approximated within 5% at temperature 
differences of less than 150C from the hot-plate temperature. 
If the temperature difference is increased to 25  C, the approxi- 
mation will give the "true" rate within 10%. 

Gray and Hamper,  in Trans Far Soc 55,  581 (1959), present 
an approximation for e~E/RT ^vhich differs from the previous 

one.    It is referred to as the "quadratic approximation":   e 

e-E/RTHP     (1/(3-2)     0    /     0
2]     where       0   =-^     2   (T - THp) 

J KiHp 

Figure 3 shows this approximation for an activation energy of 65,000 
cal/g mole (which,  when this computation was made, was believed to 
be the best number for lead azide) at a hot-plate temperature of 
380oC.    The approximation is only reasonable for temperatures 
above the hot-plate temperature,  but this limitation is not restrictive 
for steady-state calculations because all temperatures in the 
explosive are greater than the hot-plate temperature at steady state. 
It appears from Figure 3 that the quadratic approximation is not 
quite as good as the exponential approximation for temperatures 
quite close to that of the hot plate.    For temperatures ranging from 
about 10oC to 250C above the hot-plate temperature the quadratic 
approximation is better.    At temperatures more than 250C above the 
hot-plate temperature,  the quadratic approximation is very bad. 

11 
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SOLUTION TO STEADY-STATE PROBLEM USING APPROXIMATIONS FOR 
THE RATE-OF-REACTION TERM 

Since it is apparently not possible to solve Equation 2 as it stands, the 
exponential approximation to the term e'^'™*- was made.    This equation was 
then transformed into one with dimensionless variables.    The result is 
Equation 8. 

dy2 dy (8) 

where k = 0 for an infinite slab, k = 1 for an infinite cylinder and k = 2 for a 
sphere.    Since only infinite-slab geometry was considered, k = 0 in all of the 
work described in this report.    If k equals the integers one and two,  the 
mathematical solutions become progressively more complex. 

Equation 8 has been solved for infinite-slab geometry using the boundary 
conditions shown in Equations 3 and 4 in dimensionless form.    The mechanics 
of the solution are available from the author on request.    The solution is: 

(y-iK 
2e -0o 

tanh' 
-6 

1^0 tanh -1 4>-4>o 
(9) 

Equation 9 is better than any solution currently available in the literature 
for getting a temperature profile in an explosive at steady state for the 
particular boundary conditions used.    In fact,  of all the other authors,  only 
Finklestein and Gamow (NAVORD Report 90-46,  20 April 1947) even list the 
solution for getting the steady-state profile.    The procedure for getting a 
temperature profile from Equation 9 involves two steps.    First,  the temperature 
at the center plane is found by setting y = 0,  for which     0       becomes      4» 0, 
The resulting equation   is solved for      <P0, the dimensionless center-plane 
temperature.    This number for       4>       is used in Equation 9, which now has only 
y and      4>      as unknowns, that is to say,  one can pick a value of     0    and 
calculate the corresponding y to get a temperature-distance curve, 

Chambre (in J Chem Phys 20,   1795,   1952) showed solutions to the same 
problem and same boundary conditions for infinite-cylinder geometry and 
spherical geometry.   His article is beautifully v. ritten and,  although Frank- 
Kamenetsky is usually credited with being first with a solution of the problem 
of infinite-slab geometry, it is Chambre's who should be credited for a fine, 
clear job with the infinite cylinder and sphere in contrast to Frank-Kamenetsky1 s 
crud-.   sketchy articles.    Chambre's solution for the infinite cylinder iß shown 
in Equation 10. 

13 
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(10) 

(8B/5) 
where      TETn? = 1 is used to get B. 

The solution for the sphere (k = 2 in Equation 8) is considerably more compli- 
cated,    Chambre gives the solution in his article in the form of   a tabulated 
function. 

Thomas (in Trans Far Soc 54,  60,   1958) has solved Equation 8 with 
boundary condition 6 in dimensioniess form applying at both faces of the 
infinite slab and on the surface of the infinite cylinder, which of course requires 
boundary condition 4 in dimensioniess form to apply at the centers. 

Thomas and Bowes solved Equation 8 with dimensioniess boundary conditions 
shown in Equation 5 and 6 for an infinite slab, the .nost realistic case for the 
experimental setup used by the Explosives Research Section at Picatinny.    This 
solution is discussed in more detail in the section of this report entitled "Review 
of Thomas and Bowes Paper." 

If the quadratic approximation to the rate of reaction term suggested by 
Gray and Harper is applied to Equation 2 and if the subsequent equation is made 
dimensioniess, the result is Equation 10A. 

dy* 
- 5 [1 + (e - 2) 0 + (^] (10A) 

At attempt to solve Equation 10A resulted in an integral which could not be 
evaluated.    After checking integral tables thoroughly,  it was concluded that 
Equation 10A is not solvable in closed form. 

14 



STEADY-STATE TEMPERATURE GRADIENTS 

The steady-state temperature profiles were determined for a 
1-inch-thick infinite slab of RDX at a number of hot-plate tempera- 
tures between 400oK and 4330K.    The physical parameters listed by 
Zinn and Mader were used.    Equation 9 was used for these 
computations.    The minimum temperature of explosion, that is to 
say,  the maximum hot-plate temperature which will permit a steady 
state to exist for the system described above is 4330K, 

Calculations for a hot-plate temperature of 400oK revealed a 
temperature rise at the center of 0.036oK above the hot plate,  a 
negligible "self-heating effect." 

i 
■ 

An attempt was made to find a solution at 435 K,  which is above 
the minimum temperature of explosion.    Figure 4 illustrates the fact 
that there is no solution for the center temperature.    The point of 
closest approach seems to be at about 445  K.    On either side of this 
temperature,  the curves for the "e" term and the "tanh"   " term 
diverge. 

Solutions wen   obtained for hot-plate temperatures of 410°,  420°, 
425   ,  and 430  K.    The graphical solution for the center temperature 
when the hot-plate temperature is 420  K is illustrated in Figure 5, 
This type of graphical solution merely avoids trial-and-error pro- 
cedures for    0    .    Figure 6 shows the temperature profile for hot- 

oo 
plate temperatures of 410  K and 420  K,  and Figure 7 gives the same 
information for 425  K and 430  K.    These graphs illustrate several 
facts which were apparent from the statement of the problem and the 
solution,  namely,  that the temperature distribution is symmetrical 
about the center plane and that the maximum temperature occurs at 
the center plane.    It can be seen from Figure 7 that,  for a hot-plate 
temperature of 430  K,  the temperature distribution is quite well 
described by a parabola     A parabola was forced through the points 
T = 433.4,  x = 0 and T = 430.0,  x =  1.25 and the resulting points 
are shown on the figure. 

Calculation of the minimum temperature of explosion (Tpjp =4330K) 

for this case showed that the corresponding center temperature was 
442.25  K or 9.25  K above the hot-plate temperature.    This tempera- 
ture rise is the maximum that can be obtained at a steady state for 
the parameters studied here.    Thus,  one can conclude that the 

15 
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approximation for the heat-generation, term,  which was used to 
facilitate solution of the differential equation,  is satisfactory for 
these particular conditions.    It was calculated, using E = 47,500 
cal/g mole, that the approximation e~-^'^Tp^p    e-^'•'■ "    HP''       HP 

F /R T ni describes the "true" rate Q-^'
1

^
1
 to within 2,5% for this maximum 

temperature rise of 9. 25 K and a hot-plate temperature of 433 K. 
One would estimate from Figure 3 that the approximation in this 
case would be within about 3% in spite of the fact that Figure 3 was 
made for an activation energy of 65,000 cal/g mole rather than the 
47, 500 of interest here and for hot-plate temperatures of around 
600OK rather than of 4330K. 

Figure 8 summarizes the maximum center temperatures as 
the temperature of the hot plate is increased.    The rise begins from 
almost nothing at 400  K to 9.25  K at the minimum temperature of 
explosion of 433 K.    If the hot-plate temperature were increased 
beyond 433 K,  a steady state could not be supported,  the center 
temperature would tend toward infinity,  and an explosion would 
result. 

16 



CRITICAL PARAMETERS 

Most authors who have considered the steady-state problem have 
concentrated on the critical parameters -- those values of the environment 
and the geometry of the explosive itself which just barely permit a steady 
stat'1 to exist.    These efforts have been concentrated on obtaining critical 
values for the dimensionless rate parameter,        o t    The critical value,     ^    , 
is the largest value of  ^    for which a steady state can exist.    A solution for 
the minimum temperature of explosion which is not explicit in T    , involving 
the parameter     ^ c,  is shown in Equation 11. 

2.303 Bieg ^py 
(11) 

To so1ve Equation 11 for Tux,  one needs a number for       ° The value for 

depends on the geometry of the explosive and its environment.    Most of the 
published papers give values for c • 

If the solution for the  center temperature in Equation 9 is considered with 
y equal to 0, whence     "P       becomes       9 0,  the result is 

tanh 
■t. (HA) 

If this equation is considered in terms of the physical parameters rather than 
the dimensionless variables,   it can be seen that for a given explosive,   the 
physical and chemical properties E, P   ,      Q ,  Z,  and    A      are constant. 
Thus,  when a particular explosive is studied,   only the center temperature, T0 , 
the hot-plate temperature,   Tup ,   and the half thickness,   "a'1, are possible 
variables. For a given hot-plate temperature,   T0 will then be a function of only 
the half thickness. 

A hypothetical experiment could be considered in which a large hot  plate 
has on its surface a number of slab samples of explosive each thicker than the 
last.    One could observe which ones explode,  that is to say,  which ones cannot 
support a steady state,  and,  in the ones which can support a steady state,  one 
could measure the center temperature.    It should be expected that the thickest 
ones will explode and that the thinnest one will have the least rise above the 
hot-plate temperature.    The results of calculations of the sort described for 

17 
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the hvDOthetical exoeriment are shown in Figures 9 and 10 for 
infinite slabs exposed to a constant hot-plate temperature of 
430oK,    Figure 9 shows that,  for a half thickness of 1,25 cm, 
the center temperature is 433.40K, as shown in Figure 7 as 
well.   However,  if the explosive half thickness had been 1.52 
cm,  a 25% increase,  it would have exploded at a hot-plate 
temperature of 430 K.    As the slab becomes thicker, it 
becomes more and more difficult for the heat to escape; hence, 
it builds up to explosive proportions.   As the slab thickness 
approaches zero,  the center becomes nearer to the hot plate and 
is,  therefore,  more easily cooled by the hot plate.    At zero 
thickness,  the center temperature must be th.t of the hot n1ate, 
as it is.    Figure 10 is shown to complement Figure 9 merely 
because the half thickness is given in the expression for   5    as 
the square rather than the first power. 

The maximum or minimum conditions for Equation 11A could 
thus be determined by getting the derivative da^   and setting it 

dr; 
equal to o.      .( nsidering the definitions of the dimensionless 
variables it can be shown that setting da^   = 0 is equivalent to 

äfZ 

setting dS = 0,  which is procodurally more attractive 

d^o 

This procedure results in a single transcendental equation with 
one unknown,    0O.    The solution from this work for •^ 0 is shown 
in Figure  11.    The result is   0O =  1. 187.    When this result is 
substituted into Equation 11A,   it is found that the critical   S   is 
0.8784. 

m 

A table of the critical values resulting from the steady-state 
solution to Equation 8,  with boundary conditions 3 and 4 in 
dimensionless form,  follows: 
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TABLE 2 

Critical Parameters for the Steady State 

Geometry 

Slab 
Slab 

Cylinder 
Sphere 

Cylinder 
Sphere 
Slab 

6 o Investigator 

1, 187 

1.39 
1   ^1 

0.8784 Stein 
0.88 Frank-Kamenetsky 
2.00 Frank-Käme net sky 
3.32 Frank-Kamenetsky 
2 (Integer) Chambre 
3.32 Chambre 
0.87846 Enig et al 

The neat condition of merely having a single number for the 
value of     S        is not realized in two slightly more complicated cases: 

F / R T (a) the exact description of the rate equation by Q'^I^
1
 and (b) 

boundary conditions other than 3 and 4 such as 5 and 6 or even the 
symmetrical heating case of 4 and 6. 

Enig,  Shanks,  and Southworth in Second Ignition Symposium, 
p.   145,  used numerical integration to solve the problem without using 
an approximation for the rate term.    This technique yields a series 
of numbers for        8    „    8      is then a function of the temperature c        c r 

difference between the hot plate and the center.    A solution for the 
minimum temperature of explosion then becomes a slight trial-and- 
e   re " problem.    At low hot-plate-to-center temperature differences, 
the values of     8 are,  of course,  close to those of Chambre 

Thomas and co-workers(Trans Far Soc 57,  2007,   1961; 54,   60, 
1958) handled the problems of (1) nonsymmetrical temperature 
profiles and (2) a symmetrical temperature profile with a tempera- 
ture discontinuity between the surface and the bulk environment 
controlled by a surface heat-transfer coefficient«    Both of these 
cases lead to values of     8     which are a function of the ratio    ha/ A  . c 
Graphs of these functions make working with them, appear fairly 
easy. 
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The case as stated earlier in this report has been concerned 
with considerations of th« rariation of T   with half thickness at a 

o 
constant hot-plate temperature.  It is reasonable to ask whether 
the same relationships will hold if "a" is held constant and the 
variation of T0 with T^p is studied. At a constant "a",   one 
would expect the following qualitative picture: a nearly straight 
45-degree line between T0 and Tp^p at low values of T^p with a 

T 

HP 

sudden increase in T0 culminating in explosion.  Hence,   to find 
the critical conditions for explosion in this case one would hold 
"a" constant,   get the derivation dT^jp/dT0 and set it equal to 
zero.   Fortunately,   this procedure yields exactly the equation 
obtained by considering the variation of T0 with "a" at constant 
T 

HP' 

<i0 
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OF EXPLOSION 

Equation 11 for the minimum temperature of explosion was 
investigated for the effects of individual variables.    It is to be 
emphasized here that Equation 11 is not proprietary to any parti- 
cular author.    If one solves Equation 8 for k = 0, with boundary 
conditions 3 and 4,  and then applies the condition that a solution 
must exist,  the analytical result is Equation 11. 

The results of the study are shown in Figures 1Z and 13 
where the activation energv is held constant,  and in Fieure 14, 
where all variables but the activation energy are held constant. 
Figure 13 differs from Figure 12 only in that E is contained in 
the ordinate of 13 and is not used at all in 12.    It is easily seen 
that increases in     p  ,  a,  Q,    and Z lead to decreases in the 
minimum temperature of explosion, while increases in    A ,    R , 
and       £      (progression from slab (0.88) to spherical (3.32) 
geometry) lead to increases in the minimum temperature of 
explosion.    The effect of E is shown in Figure 14.    As E increases, 
Tm increases, if all other parameters   are constant. 

It is interesting to study the effect of variables over all ranges 
from zero to infinity and not just in the range which currently seems 
to be reasonable.    The following paradox makes this study L' interest. 
If an explosive has zero thermal conductivity,  then, when it is 
suddenly exposed to the hot plate ,  it will retain its initial temperature 
because no heat can be transferred into the explosive.    Hence,  no 
explosion can occur no matter what the hot-plate temperature.    The 
minitnum temperature of explosion is thus infinite.    However, 
Figures 12 and 13 show that a decrease in the thermal conductivity 
leads to a decrease in the minimum temperature of explosion.    This 
paradox is neatly resolved by studying tl-e entire range of thermal 
conductivities from zero to infinity. 

If E is held constant and the variables Q,   Z,  p ,  a   ,   1  ,  and 1 
A tc 

in Equation 11 are differentiated with respect to T    ,  one at a time 
while all other values are held constant,  it is found that a minimum 
value for Tm is reached at Tm = E/2R.    E is often a number like 
46,000 cal/g mole,  hence,  a cypical minimum in the curve of log 

Pa^QEZ 

AR  5 
versus T      occurs at 11,500  K,  a minimum 
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temperature of explosion which is out of the question.    Further 
investigation of Equation 11 reveals that,  as     A 3 ririT-'o^ P Vi P ^ 

zero or 

P a   QZ 

AR   3 

P   ,  a, Q, and Z become very large (i.e., the term 

approaches infinity),  then the equation can be sat- 

isfied if T     approaches zero.    On the other hand, Equation 11 is 
also satisfied if the terms P a. QZ      and T    ^ both approach 

AR 8 

infinity at the same rate,  so that the argument of the logarithm 
approaches unity.    These observations plus the fact that a 
minimum exists in the curve at E/2R led to the following 
qualitative figure: 

m 

paQZE 

AR     5 

0 oo 

500 25 x 10 
1,000 10 
5,000 25 x 10 
10,000 10 x 10 
20,000 12 x 10 

24 
16 

1000 5000  11,500  20,000 

T 
m 

If one takes E = 46,000 cal/g mole, the table to the right of the 
figure is obtained.   It may be observed, for what it is worth, 
that the minimum is very shallow and is quite flat between say 
5,000oK  and 20,000oK.    The figure further emphasizes that 
Equation 11 is double valued in T    .    This point may be important 

in computer work.    The computer may be very happy with a 
ridiculous,  although entirely correct,   solution to Equation 11 
like 50,000oK when the other root of,   say 4730,     would be the 
meaningful one. 
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It seems logical to ask, in conjunction with the RDX calcula- 
trorrSs^ hownsmall "a, " the half thickness of an infinite slab must 
be in order to reach the minimum in the curve if all other 
variables have the values given by Zinn and Mader.    The answer 
is approximately 10~iU cm. 

Similarly,  one might ask at what value a decrease in the 
thermal conductivity begins to cause a rise in the minimum 
temperature of explosion toward its va. ie of infinity when   ^   =0. 
For the one-inch infinite slab of, RDX with all other variables 
having the values assigned by Zinn and Mader, the thermal 
conductivity must be approximately 10"      cal/cm sec0K and 
decreasing in order to cause an increase in the minimum tempera- 
ture of explosion. 

Investigation of Equation 11 was also carried out for all ranges 
of activation energy with all other variables held constant.    There 
is no relative maximum or minimum in E with respect to Tm.    The 
following qualitative figure summarizes the results: 

With regard to this figure,  the follo"/ing observations may be made; 
(1)   At E = 0,  Tm = 0 and the slope dE/dTm equals 0,  and (2)   as E 
approaches 

approaches 
T  approaches  <x, , and the slope dE/dT m m 
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REVIEW OF THOMAS AND BOWES PAPER 

The paper by Thomas and Bowes in Trans Far Soc 57, 2007,   1961 has 
been reviewed in considerable detail.    This case is closer to the reality of 
the experiment conducted by the Explosives Research Section at Picatinny 
than any other currently available.     These authors solved Equation 8 for 
the infinite slab with boundary conditions 5 and 6 in dimensionless form. 
Equation 8,  of course, includes the exponential approximation for the 
Arrhenius term.    In the majority of the cases, the Thomas and Bowes 
equations were neater than those obtained by this review, and in all cases 
they certainly exhibited more polish.    However,  a temperature profile for 
subcritical    conditions can be obtaiued much more easily from the equations 
which follow in this report than from those of Thomas and Bowes. 
Equation 12 is the solution to the differential equation. 

- tanh -1 Se ̂  

V ß (12) 

where 
^2a      a2 lA J    u 

Erjuation 13 results from Equation 12 if only the maximum value of  ^ ^ is at 
issue. 

m 

2S ~ '^ 2a (13) 

£1 

In Equation 12,     a ,     ^   ,  and     5        (less than        $ c) are constants.   To 
get a temperature profile,  one sets y = 2,  which makes     0    become        0 , 

in Equation 12.        0 2a ^s t^e on^y remaining unknown,  and so its value is 
obtained.    Substitution of a number for       0       into Equation 12 leaves only the 
unknowns y and       0 .    Hence,  insertion of various values of    ^   gives    the 
y - 0        curve (i.e. ,  the temperature profile).    If the maximum temperature 
and the position of the maximum temperature are of interest to the exclusion 
of the remainder of the profile,  one can proceed by inserting the number for 

0 2a into Equation 13 and evaluating       0 m directly.    This value of   0 
along with    0 ^a gives ym directly from Equation 12. 

m 
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The use of the Thomas and Bowes solution, their Equations 5,  6, and 
8i,  requires simultaneous solution of two transcendental equations,  their 
Equations 6 and 8i,  for the maximum values, ^ m and m' These 
numbers can be inserted into their Equation 5 in order to get the tempera- 
ture profile,    <f>     - Z curve.   Hand solution of two transcendental equations, 
simultaneously, for two variables seems to be quite a formidable task. 

Thomas and Bowes were primarily interested in obtaining critical 
parameters for the problem they were investigating.    The critical parameter 

^ c   is a function of two variables,     a     and the environmental temperature 
As a re suit,  their solution is approximate but very close for values of a 

greater than 0.5, which includes all realistic values of     ^   .   A graph of 
their solution appears in the paper. 

n 

Considerable effort was spent looking into the problem of maxima and 
minima of a function of two variables in order to try to arrive at an exact 
solution for all positive values of      «  .    After considerable work,  it was 
concluded that this particular problem has no exact solution for all values 
of   a   .    Furthermore, it became apparent that no single maximum   o  exists 
for all values of    a      and    4>       even if the problem could be solved 
rigorously.    It is believed as Thomas and Bowes graph indicates, that 5 
increases continuously with    a      as   a     approaches infinity. 
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REVIEW OF SEMENOV SOLUTION OF STEADY-STATE PROBLEMS 

One of the first investigations of the steady-state problem was 
made by Semenov (actually the Semenov paper was not used; Thomas, 
Trans Faraday Society 56,  833,   I960 was used as a guide to 
Semenov's work), who studied it in terms of average temperatures in 
the explosive; that is to say, the temperature was assumed not to vary 
with position within the explosive.    If one assumes the temperature to 
be everywhere the same within an infinite slab of explosive and that all 
heat generated within the explosive is transferred to tho surroundings, 
Equation 14 results. 

QZe"E/RT = h (T - T (14) 

This equation is also the solution for T.    For a constant ambient 
temperature, the temperature of the explosive increases with 
increasing slab thickness until a certain thickness is reached at 
which this slab will explode.   Graphically,  this relationship is^ 

T 
Explosion occurs for a> ar. 

To obtain the critical temperature rise one needs to obtain da/dT 
from Equation 14 and set it equal to zero.    This procedure results 
in a critical  temperature rise of       </> = 1 or,  expressing   0  in its 
defining terms. 

(T - T      ) 
RTC 

(15) 

It is not necessary to apply any approximation to the rate term in 
Equation 14 in order to perform the required mathematical 
operations.    However, the exponential approximation has been used 
to be consistent with previous calculations.    Without this approxi- 
mation, the results would be the same except that T would replace 
T^      on the right-hand side of the above equation.    The solution for 
the critical half thickness then becomes 
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Manipulation of this equation into the form of the one for the 
minimum temperature of explosion in the spatial-varying tempera- 
ture problem is given in Equation 16, 

* 

         E 

m 2.303 R log   -i—^  

h R To m 

Equation 16 should be compared to Equation 11, which is the 
spatial-varying-temperature solution.    The surface heat-transfer 
coefficient replaces the thermal conductivity; the half thickness 
appears only to the first power; and the geometric term      5       is 
absent.    The constant e also has been introduced. 

Further manipulation of Equation 15A to introduce the 
dimensionless rate parameter      5       shows the critical value of 
for the infinite slab to be    5        =     a 
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i SYMBOLS 

p - density of explosive,  g/cm 

Q = heat of reaction,  cal/g 

Z = frequency factor,  sec -1 

E = activation energy,  cal/g mole 

R = universal gas constant, cal/g mole 0K 

T = absolute temperature,    K 

A = thermal conductivity,  cal/cm sec    K 

V    = Laplacian operator 

C = specific heat of explosive,  cal/g    K 

t = time ,  sec 

a = half thickness of explosive or radius of cylinder or sphere,  cm 

Trrp = absolute temperature of hot plate,       K 

x = distance into explosive,  cm 

2 o. h = heat transfer coefficient,  cal/cm     K sec 

T^    = absolute temperature at distance 2a,  0K 
2a 

To,,   = absolute temperature of surroundings,  0K 

E 
(ft   - dimensionless temperature = 

R T HP 
(T - T      ) 

y = dimensionless distance =   — 
a 

fi       ,.           .     ,                 f.           h       a
2 E     p    QZe -E/RTHP o  = dimensionless reaction rate =  

R T      2 ^ K ^P 

0    = «^   at position x = 0 
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—                                                        r 
Z = dimensiomess distance =  

Tj^ - minimum (hot plate) temperature of explosion, 0K 

T0 = temperature at center of slab,  cylinder, or sphere,  0K 

0       =0    at position x = 2a u a 

a = dimensionless heat-transfer ration = ha/A 

«/»oo = </>        at the bulk temperature of the environment 

^m = maximum value of 0 

ym = dimensionless position at which     0m occurs 

T = average absolute temperature in explosive,  0K 

T^   = absolute temperature of surroundings,  0K 

■»m T        = minimum temperature of explosion for Semenov solution,  0K 

tanh        = inverse hyperbolic tangent 

5    = critical value of 8 
c 
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Fig 5        Solution to Equation 9 for THp = 420oK 
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Fig 7       Steady state temperature profiles in 2.50-cm-thick RDX slab 
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